If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1=-16t^2+40
We move all terms to the left:
1-(-16t^2+40)=0
We get rid of parentheses
16t^2-40+1=0
We add all the numbers together, and all the variables
16t^2-39=0
a = 16; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·16·(-39)
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{39}}{2*16}=\frac{0-8\sqrt{39}}{32} =-\frac{8\sqrt{39}}{32} =-\frac{\sqrt{39}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{39}}{2*16}=\frac{0+8\sqrt{39}}{32} =\frac{8\sqrt{39}}{32} =\frac{\sqrt{39}}{4} $
| x-16=32 | | 4x+2x+7=-41 | | 8=5w-3w | | x^2-20=2x-4 | | 2x+10+24=90 | | 5(s-3)=-30 | | 350/50=70s | | 2x-4+x^2-20=180 | | S+25=13+2s | | 36=54‐9a | | 4x+2x7=41 | | 2+1r=3 | | 6(3x-2.5)+5=3x-1 | | 7w+19=124 | | x+3/9.5=x+6/12 | | 4-2c+3=-9 | | (2x-1)(x+6)=-x(-2x-11)-6 | | 7=4x- | | -2(x-3)-x=-4x+5 | | 56=35+x | | 6x–4(x+1)=4(x-3)+8 | | 5y+8=38* | | 44=3p-46 | | 3=r/2-6 | | (a-4)3=7 | | 4x+5-3=+2x= | | 8s=4+9s | | -8x+2(x+4)=14 | | (11-b)^2=36 | | x+2=x-6=12 | | x/18=7/12 | | j/6+56=62 |